Tensor Product Variational Formulation for Quantum Systems
نویسندگان
چکیده
We consider a variational problem for the two-dimensional (2D) Heisenberg and XY models, using a trial state which is constructed as a 2D product of local weights. Variational energy is calculated by use of the the corner transfer matrix renormalization group (CTMRG) method, and its upper bound is surveyed. The variational approach is a way of applying the density matrix renormalization group method (DMRG) to infinite size 2D quantum systems.
منابع مشابه
Variational quantum Monte Carlo simulations with tensor-network states.
We show that the formalism of tensor-network states, such as the matrix-product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approach by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D x D m...
متن کاملSelf-Consistent Tensor Product Variational Approximation for 3D Classical Models
We propose a numerical variational method for three-dimensional (3D) classical lattice models. We construct the variational state as a product of local tensors, and improve it by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG) applied to 2D classical systems. Numerical efficiency of this approximation is inve...
متن کاملWiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملFixed Point of the Finite System DMRG
The density matrix renormalization group (DMRG) is a numerical method that optimizes a variational state expressed by a tensor product. We show that the ground state is not fully optimized as far as we use the standard finite system algorithm, that uses the block structure B • •B. This is because the tensors are not improved directly. We overcome this problem by using the simpler block structur...
متن کاملTensor product representation of a topological ordered phase: Necessary symmetry conditions
Citation Chen, Xie et al. " Tensor product representation of a topological ordered phase: Necessary symmetry conditions. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story mat...
متن کامل